Benefits of plane wave imaging (PWI) for ultrasound NDT industrial applications

Hervé SAULAIS ${ }^{1}$, Ewen CARCREFF ${ }^{1}$, Cyril THIBAULT ${ }^{1}$
${ }^{1}$ TPAC NDT - DB SAS, Nantes, Frankreich
Kontakt E-Mail: herve.saulais@tpac-ndt.com

Abstract

Kurzfassung Ultrasonic testing is currently one of the main techniques employed in many industries (metallurgy, foundry, aeronautics, etc.). This technique consists in generating ultrasonic waves into parts to be inspected to possibly detect and size defects from the analysis of backscattered signals. Starting from conventional techniques, new technologies matured through the years: Phased Array some decades ago and FMC/TFM a decade ago. The PWI technique is filling the gap between these two: merging the speed of Phased Array and the accuracy of FMC/TFM. Nowadays, acquisition devices are more and more powerful and customizable. The Plane Wave Imaging (PWI) offers numerous advantages for NDT inspections: high level of energy in emissions, same high number of elements in emitting and receiving, ability to insonify large pieces. In this paper, the principle of the technology is presented. Then, several applications cases taken from industrial cases are detailed, showing the improvement compared to Phased Array and FMC/TFM techniques. We show that PWI is beneficial for large metallurgical pieces and foundry blocks specifically. It also shows improvement for crack detection in such cases.

TFM Total Focusing Method


```
■
```


PWI Plan Wave Imaging

■

TFM vs PWI vs DWI vs CWI

- Capacity to merge accuracy of FMC/TFM and faster than PAUT
- Ability to insonify large or attenuative pieces
- Robust to be deployed in industrial environment

Industrial case: aluminum foundry

Main final use: packaging
Intermediate steps: machining and lamination

■
Industrial case: inspection of aluminium blocks
Block dimensions:

- Length : $\mathbf{2 4 0 0} \mathbf{~ m m}$ à $\mathbf{9} \mathbf{2 0 0} \mathbf{m m}$
- Width : 950 mm à $\mathbf{2} \mathbf{5 0 0} \mathrm{mm}$
- Thickness : $\mathbf{3 7 0} \mathbf{~ m m}$ à $\mathbf{6 3 0} \mathrm{mm}$
- Weight: 6 tà 32 t

Challenges:

- Number of dimensions
- Variety of alloys
- Surface conditions
- Depths and sizes of the defects
- 18,000 blocks per year to inspect

Foundry outputs: Billets 10\% Blocks 90\%

Industrial case: feasibility study as a first step

Challenges:

- Number of dimensions
- Variety of alloys
- Surfaces conditions
- Depth and sizes of the defects
- 18,000 blocks per year to inspect

Options for the study:

- On representative blocks slices
- Prototyping of a probe holder
- Test of different UT technics
- Focus on inspection speed

Industrial case: probe holder design

- Key milestone for acquisition quality (coupling, stability, repeatability)
- Choice to go for atrue industrial prototype
- Manufacturing through 3D printing

Industrial case: test set-up

UT Device:

- Explorer 128/128

Probe:

- 1 MHz 128 elts Pitch 1 mm

ProbeHolder:

- Water Path $\approx 4 \mathrm{~mm}$

SW:

- Prelude 4.1.9
- ARIA 2.5.6

Plate1: $2130 \times 500 \times 65 \mathrm{~mm}$
Plate2: $1820 \times 510 \times 85 \mathrm{~mm}$

Industrial case: test set-up

Inspection side1

Industrial case: defect detection FMC vs. PWI

-

Industrial case: defect \& non defect detection with PWI

Inspection Side 1

Improvement of localization, sizing, characterization

Using monochannel UT, block sanction $=$ rejected

Industrial case: conclusions of feasibility study

- Higher resolution / no deformation of image with PWI among UT technics (conventional \& PAUT)
- Lower probability of false calls with PWI versus current inspection
- In this industrial application, PWI will be faster than any other UT technics (linear speed of 50 mm per sec is reachable)

Industrial case: next steps

- Inspection of finished and cooled blocks located on storage area

- Move from the feasibility study to an industrial prototype through an integrator with our support:
- Design \& manufacturing of final probe holder
- Definition of a process inspection trolley to manage all constraints
- Coupling
- Weight
- Atmospheric conditions
- Energy supply

Contact us:

contact@tpac-ndt.com
contact@aos-ndt.com

